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Abstract
We investigate the statistical properties of random walks on the simplest
nontrivial braid group B3, and on related hyperbolic groups. We provide
a method using Cayley graphs of groups allowing us to compute explicitly
the probability distribution of the basic statistical characteristics of random
trajectories—the drift and the return probability. The action of the groups
under consideration in the hyperbolic plane is investigated, and the distribution
of a geometric invariant—the hyperbolic distance—is analysed. It is shown
that a random walk on B3 can be viewed as a ‘magnetic random walk’ on the
group PSL(2, Z).

PACS numbers: 05.40.−a, 02.50.−r, 02.40.Ky

1. Introduction

The investigation of the statistical aspects of braids and, in general, of homotopy groups
seems to be a relatively new issue in condensed matter physics. The main difficulties in
the statistical study of topology of linear uncrossable objects are due to two facts: (a) the
topological constraints are non-local and (b) different entanglements do not commute. The
difficulty (a) has been resolved so far by introducing Abelian Gauss-like topological invariants,
counting windings of one chain around the other. This Abelian approximation loses the very
rich content of property (b).

Before entering the details of the problems under consideration, it makes sense to pay
special attention to a few physical examples where the non-Abelian structure of the phase
spaces of uncrossable linear objects with topological constraints plays a crucial role in the
observable properties of these physical systems.

The most elaborated examples belong to the area of statistics of polymer systems with
topological constraints (see, for example, [1] and references therein). The chain-like structure
of macromolecules causes the so-called linear memory (i.e. fixed position of each monomer
unit along the chain), which, besides the standard properties (such as the low translational
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entropy and large space fluctuations) leads to the fact that different parts of polymer molecules
fluctuating in space cannot pass through one another without chain rupture. For the system of
non-phantom closed chains this means that only those chain conformations are available which
can be transformed into one another continuously. The influence of topological constraints
on the physical properties of polymer networks is manifested, for example, in the strong
deviation of the stress–strain dependence from a classical elasticity theory in polymer rubbers
[2]. The modern theories [3] taking properly into account the noncommutative character of
multiple entanglements in polymer networks describe the observed experimental data with
very good precision. Another example in this field deals with the influence of topological
constraints on the fractal structure of strongly collapsed unknotted ring polymer. In the set of
works [4] it has been shown that the global topological condition of the absence of knots on a
collapsed polymer chain has a strong influence on all local scales making each sub-part of the
polymer ring almost unentangled. The investigation of the corresponding structure, called a
‘crumpled globule’, is impossible in the framework of the Abelian description of topological
constraints. The principal results both for the problems of high elasticity of polymer rubbers
and for the statistics of collapsed polymer rings have been achieved in the framework of the
model ‘random walk in an array of obstacles’ [5]) which is nothing other than a physical
interpretation of the random walk on the free group.

Another very transparent example of manifestations of topological constraints in
condensed matter physics deals with the dynamical properties of vortex glasses in high
temperature superconductors [6]. In CuO2-based high-Tc superconductors in fields less than
Hc2 there exists a region where the Abrikosov flux lattice is molten, but the sample of the
superconductor demonstrates the absence of conductivity. This effect has been explained by
the highly entangled state of the braid of flux lines due to their topological constraints [7]. The
recent contribution to this subject [8] develops a symbolic language which permits construction
of objects with a braid-like topology in 2 + 1 dimensions and to solve the simplest statistical
problems where the noncommutative character of topological constraints is explicitly taken
into account.

The aim of this work is to develop constructive methods of investigation of the statistical
properties of random processes on the simplest nontrivial noncommutative braid and braid-like
groups, emerging in various problems of condensed matter physics where the non-Abelian
character of the phase space plays a crucial role [9]. To be more specific, the paper is devoted
to a study of random walks on the modular group PSL(2, Z) and some closely related groups:
the simplest nontrivial three-strand braid group B3, the Hecke groups Hq and the free groups
Fn (all definitions are given below). We examine simultaneously the limiting distribution of
random walks on Cayley graphs of these groups as well as on the embedding of these groups
in the hyperbolic plane. We analyse the statistical properties of random walks on the Cayley
graphs of the above-mentioned groups both in a metric of words and in the natural metric in
the hyperbolic plane.

To establish links of the particular questions addressed in the current work with real
physical problems we discuss in the conclusion the physical significance of the results obtained
in our contribution. Let us mention briefly that the two most important physical questions in
statistical topology are: (a) the evaluation of the knot (or braid) entropy (i.e. the volume of
available configurational space for fixed topological state of the knot (or the braid)), and (b)
the computation of expectation values of topological invariants.

The statistics of Markov chains on the group PSL(2, R) and its subgroups has been
extensively studied in the mathematical literature. Among the known results linked to the
theme of our work we can mention: (a) the central limit theorem for Markov multiplicative
processes on discrete subgroups of the group PSL(2, R) [10, 11], (b) investigation of the
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boundary of some noncommutative groups [12, 13], as well as determination of various
numerical characteristics of these groups [14, 15], (c) particular examples of the exact results
for limiting distribution functions of random walks on Cayley graphs of free and modular
groups [5, 16–18] and (d) conjectures concerning the return probability and drift on the braid
groups B3 [19] and Bn [20].

In this paper, we compute the drift and the return probability for symmetric random walks
(in a metric of words) on the groups Hq and B3. These two characteristics (the drift and the
return probability) have natural topological interpretations: the drift is mainly related to
the mean value of the topological invariant while the logarithm of the return probability gives
the entropy of the trivial topological state (see also the discussion in the conclusion).

Moreover, as has been said, we pay special attention to the statistics of random walks on
the embeddings of the groups PSL(2, Z), B3,Hq, Fn in the hyperbolic plane. To be specific,
we study a 2×2 matrix representation of these groups and consider their homographic action3

on the hyperbolic plane H. This allows us to embed the Cayley graphs in H and to define
isometric hyperbolic lattices. Taking advantage of the hyperbolic metric on H, we investigate
the probability distribution of the geodesic distance between the ends of random processes
with symmetric transition probabilities on these lattices embedded in H. The problem under
consideration is reduced to the study of the absolute value of a product of random matrices.
This part of our investigation is semi-analytic and is based on the numerical results on the
structure of the invariant distribution of geodesics at the boundary of H. We found that
the drift on a Cayley graph in a metric of words coincides after proper normalization with
the drift on the corresponding isometric lattice of H in the natural hyperbolic metric. This
result establishes a relation between two group invariants: (i) the irreducible length of a
group element, which does not depend on the representation, and (ii) the hyperbolic distance
associated with the same group element (directly linked to its absolute value), defined only
for the matrix representation.

As an application of our results, we consider the relation between the distribution of
Alexander knot invariants [21, 22] and the asymptotic behaviour of random walks over the
elements of the simplest nontrivial braid group B3. This class of problems arises naturally
even beyond the aims of our particular investigation: the limiting behaviour of Markov chains
on braid and so-called local groups can be regarded as the first step in a consistent development
of harmonic analysis on multiconnected manifolds (Teichmüller spaces are an example).

The paper is structured as follows. In section 2, we give the basic definitions, introducing
the different groups and their Cayley graphs. A general solution to the diffusion problem on
these graphs, as well as exact computations of the drift and the return probability for B3, are
developed in section 3. Section 4 is devoted to the study of the action of these groups in the
hyperbolic plane. A discussion of our results, the relation between the different approaches as
well as some physical consequences are presented in section 5.

2. The groups PSL (2, Z), Hq, B3, Fn and their Cayley graphs

2.1. Basic definitions

We consider a special class of hyperbolic-like groups which is the modular group PSL(2, Z).
Some of its generalizations are the Hecke groups Hq , and its central extension, the braid group
B3. By hyperbolic-like groups we mean a class broader than Gromov’s hyperbolic groups [24],
which prohibits central extensions like B3. The important feature for us is just the exponential

3 Due to the fact that the group B3 is not a hyperbolic group and since the two-representation of B3 is not unimodular,
its homographic action is not faithful.
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growth. We shall also recall the well-known properties of the free groups Fn (we denote by
Fn the free product of n copies of Z2).

1. The modular group PSL(2, Z) is a free product Z2 � Z3 of the two cyclic groups of
second (generated by a2) and third (generated by b3) orders. In a standard framing using
generators S (inversion) and T (translation), the group PSL(2, Z) is defined by the following
relations:

(ST )3 = b3
3 = 1 S2 = a2

2 = 1. (1)

The generators T and S of the modular group PSL(2, Z) have a natural representation by
unimodular matrices T̂ and Ŝ:

T̂ =
(

1 1
0 1

)
Ŝ =

(
0 1

−1 0

)
. (2)

2. In addition to the modular group PSL(2, Z) we shall consider the so-called Hecke
group Hq which ‘interpolates’ between the modular group PSL(2, Z) (for q = 3) and the free
group F3 with three generators, the so-called � group (for q = ∞). The Hecke group Hq is
isomorphic to Z2 � Zq (we denote by a2 and bq the generators of orders 2 and q). The Hecke
group is defined by a straightforward generalization of relations (1)

(STq)
q = bq

q = 1 S2 = a2
2 = 1 (3)

and the generators Tq and S have the following matrix representation (compare to (2)):

T̂ q =
(

1 2 cos π
q

0 1

)
Ŝ =

(
0 1

−1 0

)
. (4)

The parameter q takes the discrete values q = 3, 4, 5, 6, . . . .

3. The braid group B3 is defined by the commutation relations among generators {σ1, σ2}:
σ1σ2σ1 = σ2σ1σ2 σ1σ

−1
1 = σ2σ

−1
2 = e. (5)

In our further construction we shall repeatedly use another framing:

ã = σ1σ2σ1 b̃ = σ1σ2. (6)

The generators of the group B3 can be represented by PGL(2, R) matrices. To be more
specific, the generators σ1 and σ2 in the Burau representation [21] read

σ̂1 =
(−t 1

0 1

)
σ̂2 =

(
1 0
t −t

)
(7)

where t is the free parameter. It is more convenient to introduce the parameter u as follows:

u =
{√

t for t � 0√−t for t < 0

and consider normalized generators uσ̂1 and uσ̂2 with determinant 1:

uσ̂1 =
(

u 1/u

0 1/u

)
uσ̂2 =

(
1/u 0
−u u

)
. (8)

The group generated by uσ̂1 and uσ̂2 will be denoted later on as PSL(2, Z)u. Indeed it is just
a deformation of PSL(2, Z), which preserves all commutation relations. For t = −1 (i.e. for
u = 1) one has PSL(2, Z)u = PSL(2, Z). It is known that the group B3 is a central extension
of PSL(2, Z) of the centre consisting of the elements

(σ̂1σ̂2)
3λ = (σ̂2σ̂1)

3λ = (σ̂1σ̂2σ̂1)
2λ = (σ̂2σ̂1σ̂2)

2λ =
(

t3λ 0
0 t3λ

)
∀λ∈ Z (9)

(let us note that the centre is isomorphic to Z).
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Figure 1. Some examples of closed braids and the corresponding links.

Recall that graphically, each word of B3 corresponds to a particular three-strand braid,
going from the top downwards, see figure 1. A closed braid is obtained by gluing the ‘top’ and
‘bottom’ free ends on a cylinder. Any closed braid defines a link (a knot is a particular case).
However the correspondence between braids and links is not mutually single valued and each
link can be represented by an infinite number of different braids (see [21, 22]). The irreducible
length of a braid gives nevertheless a rich characteristic of the link complexity.

There exists extensive literature on the general properties of braid groups, see [21]; for
the past works on the normal forms of words, we shall quote [23].

Any element of the group G = {PSL(2, Z),Hq, B3} is defined by a word in the alphabets
of the corresponding letters (generators):

• {S, T , T −1} or
{
a2, b3, b

−1
3

}
for PSL(2, Z)

• {S, Tq, T
−1
q

}
or
{
a2, bq, b

−1
q

}
for Hq

• {σ1, σ2, σ
−1
1 , σ−1

2

}
or {ã, ã−1, b̃, b̃−1} for B3.

We denote by wn a word corresponding to a given sequence of letters of length n, and by
LG(wn)—the irreducible length in the metric of words (the superscript G is used only when it
is necessary), or in other terms the minimal number of generators necessary to build wn. The
irreducible length can be also viewed as a distance from the unity on the Cayley graph of the
group G. Note that LG(w) depends on the set of generators we consider.

2.2. Cayley graphs

The modular group PSL(2, Z) is a particular case of the Hecke group Hq at q = 3. We
consider the more general case of the Cayley graphs of the groups Hq for q = 3, 4, . . . . The
Cayley graph of B3 will be constructed afterwards. We investigate in this section only the
abstract presentation of the groups in terms of commutation relations and do not pay attention
to any matrix representation. We recall that the Cayley graph of a group G is the graph whose
vertices are labelled by group elements, and whose links are as follows: w and w′ are linked
if and only if there exists a generator g such that w′ = wg. Following this rule, we can easily
construct the Cayley graph Gq of the group Hq represented by

{
a2, bq, b

−1
q

}
.

For any finite values of q (q is integer) the graph Gq has local q-cycles (because bq is of
order q), while the corresponding ‘dual’, or ‘backbone’, see figure 2, graph is the tree graph
Tq , which is precisely the graph of Fq . This is due to the free product structure of Hq ∼ Z2 � Zq
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A

B

A′

B′

Figure 2. Cayley graph of Hq , with q = 4. Arrows correspond to generator bq = STq , thin lines
to generator a2 = S = S−1. The dashed graph is the corresponding backbone graph, a tree Tq ,
graph of Fq . The distance d between A and B is d = 5, while the distance k (corresponding to the
distance between A′ and B′) is k = 2.

(see explanations below). The graph Gq is shown in figure 2, where the backbone graph is
marked by a dotted line.

3. Diffusion on graphs

In this section, we investigate some statistical properties of random walks on the groups
introduced above, using their Cayley graphs. In particular, we consider simple random walks,
that are walks of nearest neighbour type with symmetric transition probabilities.

3.1. Random walk on PSL(2, Z)

Let us consider the free product groups of the form Z2 � Zq (isomorphic to Hq) in the framing
which uses the generators a2 and bq of orders 2 and q, respectively. Graphs of such groups
are shown in figure 2. We define two different ‘metrics’ of words on these graphs. The
first metric is associated with the geodesic distance d on the graph—the minimal number of
steps between two points belonging to the graph, and the second metric is associated with the
geodesic distance k (called later the ‘generation’) on the backbone graph Tq . Our goal is to
compute the probability Pq(d, n) of being at a distance d from the initial point (the root of the
graph) after n random steps. The probability P̄ q (k, n) of being on the backbone graph at a
generation k from a root point after n random steps will also be of use.

First of all we compute P3(d, n) and P̄ 3(k, n) for the case of PSL(2, Z). In this case the
graph structure ensures the relation

|d − 2k| � 1.

Therefore we can consider only P̄ 3(k, n). Write

P̄ 3(k, n) = P̄
i

3(k, n) + P̄
o

3(k, n)

distinguishing for an elementary triangular cell located at generation k the vertex closest to
the root (corresponding to P̄

i

3(k, n)) and the two others (corresponding to P̄
o

3(k, n)) (see
figure 3).

A direct enumeration gives the following master equation for k � 2:{
P̄

i

3(k, n + 1) = 1
3

(
P̄

o

3(k, n) + P̄
o

3(k − 1, n)
)

P̄
o

3(k, n + 1) = 2
3 P̄

i

3(k, n) + 1
3

(
P̄

o

3(k, n) + P̄
i

3(k + 1, n)
) (10)
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-1

-1σ2

σ2

root

i

i

i
i
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o

o

o

Figure 3. Random walk on PSL(2, Z) in terms of generators σ̄i . Vertices of type ‘i’ and ‘o’ are
shown.

with initial conditions of the form{
P̄

i

3(k, 0) = αδk,0

P̄
o

3(k, 0) = (1 − α)δk,0
(11)

where α is an arbitrary parameter fixing the initial condition and lying in the interval 0 � α � 1.
We are seeking the asymptotic (1 � k � n) solution to (10) near the maximum of the
probability distribution, and therefore will not take into account the specific form of the
boundary condition.

Define the Laplace–Fourier transform:

Qi,o(x, s) = T
[
P̄

i,o

3

] =
∞∑

n=0

sn

+∞∑
k=−∞

eikxP̄
i,o

3 (k, n) (12)

whose inverse can be written in the form

P̄
i,o

3 (k, n) = 1

4iπ2

∮
ds

sn+1

∫ π

−π

e−ikx Qi,o(x, s) dx. (13)

One straightforwardly obtains the following algebraic system of linear equations:


Qi(x, s) − s

3
(1 + eix)Qo(x, s) = α

− s

3
(2 + e−ix)Qi(x, s) +

(
1 − s

3

)
Qo(x, s) = 1 − α

(14)

which determines the function Qi,o(x, s):

Qi,o(x, s) = ai,o
α (x) + bi,o

α (x)s

s2 +
3

3 + e−ix + 2 eix
s − 9

3 + e−ix + 2 eix

= ai,o
α (x) + bi,o

α (x)s

p(x, s)
(15)
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where 


ai
α(x) = 9α

3 + e−ix + 2 eix

ao
α(x) = 9(1 − α)

3 + e−ix + 2 eix

bi
α(x) = 3(1 − 2α + (1 − α)eix)

3 + e−ix + 2 eix

bo
α(x) = 3α(2 + e−ix)

3 + e−ix + 2 eix
.

(16)

Denote by s±(x) the roots of p(x, s). Using (13) one can rewrite

P̄
i,o

3 (k, n) = 1

2π

∫ π

−π

dx
e−ikx

s+ − s−

[
ai,o

α (x)

(
1

sn+1
+

− 1

sn+1−

)
+ bi,o

α (x)

(
1

sn
+

− 1

sn−

)]
. (17)

We are interested in the n, k � 1 regime, and therefore consider the integrand in (17) for
x → 0. Here we expose the second-order computation, keeping in mind that any order can be
reached in the same way. With


s+ = −3

2
+

3 ix

20
− 51x2

250
+ O(x3)

s− = 1 − ix

15
+

209x2

2250
+ O(x3)

(18)

one gets

P̄ 3(k, n) ≈ 1

2π

∫ π

−π

dx e−ikx

(
1 − ix

15
+

209x2

2250

)−n

≈ 1

2π

∫ ∞

−∞
dx exp

[
−ikx − n

(
107x2

1125
− ix

15

)]

≈ A

n1/2
exp

[
−1125

(
k − n

15

)2

428n

]
(19)

where A is the normalization constant. Let us stress once again that expression (19) defines the
probability of having the end-to-end distance in k steps along the backbone on the Cayley graph
of the group PSL(2, Z) for the n-step random walk; this result is valid only near the maximum
(in k) of the distribution function P̄ 3(k, n). The physical sense of (19) is very transparent:
the effective curvature of the target space produces the ‘driving force’ (in the direction from
the origin) for the random walk. Hence, the resulting distribution is transformed into the
one-dimensional Gaussian function with the shift in the exponent.

Expression (19) allows one to compute the limiting value of the normalized drift l̄3

l̄3 = lim
n→∞

〈k〉3

n

on the backbone graph T3, where

〈k〉3 =
∫ ∞

−∞
kP̄ 3(k, n) dk = n

15
and, hence, the drift l3

l3 = lim
n→∞

〈d〉3

n
= 2l̄3 = 2

15
on the graph H3.
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This formalism can be generalized to the case of Hq, q � 4 as shown in appendix B, the
drift in this case being accessible only numerically.

3.2. Random walk on B3: drift and return probability

3.2.1. Analytic results. We now turn to the braid group B3 and in particular show that some
statistical characteristics of random processes on B3 have the same asymptotic behaviour as
that on PSL(2, Z). The key point is that B3 is a central extension of PSL(2, Z). Let us recall
that the centre Z of B3, generated by ã2 = b̃3, is isomorphic to Z. This is a general feature
of braid groups: the centre is generated by the square of the longest Coxeter element (or
half-twist) denoted by �. In the case of B3,� = ã. We denote by π the canonical quotient
map

π : B3 −→ B3/Z ∼ PSL(2, Z). (20)

One then has 


π(σ1) = σ̄1 = a2b
−1
3

π(σ2) = σ̄2 = b−1
3 a2

π(ã) = a2

π(b̃) = b3

(21)

where a2 and b3 are defined in (1).
A natural representation of the Cayley graph of B3 is three dimensional. As shown in

figure 4, the map π can then be viewed as a projection from 3D to 2D.
Consider now an n-letter random word wn written in terms of the generators of the group

B3:

wn =
n∏

i=1

σri

where we have set σ−1
ri

= σ−ri
and indices ri are uniformly distributed in {−2,−1, 1, 2}. We

recall that LB3(wn) is the irreducible length of wn. It is evident that

LB3(wn) � LPSL(2,Z)(π(wn)). (22)

Keeping in mind the geometrical interpretation of B3 shown in figure 4, we can easily derive
equation (22) from a triangular inequality.

Consider now the irreducible decomposition in PSL(2, Z):

π(wn) =
LPSL(2,Z)(π(wn))∏

i=1

σ̄r ′
i
. (23)

The linear asymptotic of 〈LPSL(2,Z)(π(wn))〉 for n � 1 is computed in appendix A for the
group PSL(2, Z). From (23) and the definition of the quotient map, we get

wn = �2f (n)

LPSL(2,Z)(π(wn))∏
i=1

σr ′
i
. (24)

As �2 is a six-letter word in the alphabet
{
σ1, . . . , σ

−1
2

}
(see equation (9)), the following

condition on f (n) holds:

|f (n)| � n

6
.
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B

B

π
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3

3

Figure 4. B3 Cayley graph and its projection (PSL(2, Z)). Thin arrows correspond to ã, thick
ones to b̃. Note that π(αi) = α, π(βi) = β and so on. Recall that a2 has to be identified with a−1

2 .

Hence, the irreducible length of the word wn can be estimated from above

LB3(wn) � 6|f (n)| + LPSL(2,Z)(π(wn)). (25)

Let us show now that the process f (n) is such that

〈|f (n)|〉 = O(
√

n). (26)

One can use the methods of semi-Markov chains. These rest on the fact that an increment of
f is a regenerative event and the times between successive increments are i.i.d. One then uses
the following:

1. The symmetry of the process implies that the words �2 and �−2 appear with the same
probability, which gives 〈f (n)〉 = 0.

2. The increment |f (n + 1) − f (n)| is bounded from above by some constant.

Thus, the law of large numbers gives (26). This, together with (22) and (25), allows one
to write

LPSL(2,Z)(π(wn))

n
� LB3(wn)

n
� LPSL(2,Z)(π(wn))

n
+ O

(
1√
n

)
. (27)
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Using the result limn→∞ LPSL(2,Z)(π(wn))/n = 1
4 obtained in appendix A for the symmetric

random walk on PSL(2, Z), one arrives for generators
{
σ̄1, . . . , σ̄

−1
2

}
at the following

asymptotic expression:

lB3 = lim
n→∞

LB3(wn)

n
= 1

4
. (28)

3.2.2. Statistics of loops on B3: return probability for ‘magnetic’ random walks. The
investigation carried out above shows that if a random walk on the group B3 ends in the centre
Z(B3) (such a walk we shall call a Z-walk), it can be regarded as a closed ‘magnetic’ random
walk on PSL(2, Z). Namely, if one inserts in each elementary cell of the hyperbolic lattice
shown in figure 4 a ‘magnetic flux’ h and denotes by 
 the total flux through a closed path on
PSL(2, Z), then any word wZ

n corresponding to a Z-walk on B3 can be written as

wZ
n = �2
/h.

In other words, the group B3, being the central extension of PSL(2, Z), gives rise to a fibre
bundle over PSL(2, Z) such that every full turn around the elementary cell leads to another
sheet of the Riemann surface of PSL(2, Z). The outcome of this construction is that Z-walks
on B3 can be decomposed into a product of elementary full turns around cells (this is due to
the tree structure of the backbone).

Let un(
) be the probability that a closed n-step loop on a graph PSL(2, Z) carries a flux

. The function un(
) is of major interest for us, especially because at 
 = 0 it is connected
to the probability of finding a trivial braid (i.e. completely reducible word) from a random
braid of initial length n (see equations (35)–(37)).

First of all we compute ua
n(
) for a walk on the group PSL(2, Z) with local passages

in the basis
{
a2, b3, a

−1
2 , b−1

3

}
(let us stress that for magnetic walks one has to distinguish

‘artificially’ between steps a2 and a−1
2 , in order to assign an area to loops a2

2). Denote by
#a2, #a−1

2 , #b3, #b−1
3 , respectively, the total number of steps a2, a

−1
2 , b3, b

−1
3 in a given closed

path on PSL(2, Z). The flux 
 can be decomposed as follows:


 = h

6

(
3
(
#a2 − #a−1

2

)
+ 2
(
#b3 − #b−1

3

))
. (29)

Recall that we consider an n-step process on PSL(2, Z), conditioned by the fact that the path
is closed (i.e. returns to the origin). Following (29), we introduce a simultaneous process 
i

(with 
0 = 0) such that


i+1 = 
i + φi+1 (30)

where

φi =
{±h/2 if the step is a±1

2

±h/3 if the step is b±1
3 .

(31)

Evidently the final value 
n gives the total flux 
 through the closed path. This process is as
follows:

1. Note that on PSL(2, Z) we have a−1
2 = a2, and therefore p(φi = h/2) = p(φi = −h/2).

2. The sign of the magnetic field can be arbitrarily changed, hence p(φi = h/3) = p(φi =
−h/3) (i.e. positive, b3

3, and negative, b−3
3 , elementary turns are equidistributed for closed

as well as for open paths).
3. We show that at least asymptotically the process 
i does not depend on the condition that

the path is closed. The closure condition on PSL(2, Z) is a condition on the irreducible
length of words. The irreducible forms on PSL(2, Z) are exactly the words of the form
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a±1b±1a±1b±1a±1 . . . . The relative weight of a±1 and b±1 in this irreducible form is 1,
just as for the ‘free’ (without any condition) process. It means that even if the condition
that the path is closed is imposed, one still has p(φi = h/2) = p(φi = h/3).

The process 
i is then a classical one-dimensional random walk, and therefore for n large,
one has

ua
n(
) = 1

hσa

√
2πn

exp

(
− (
/h)2

2nσ 2
a

)
(32)

where σ 2
a = 1

2

(
1
4 + 1

9

) = 13
72 .

Returning to the random walk on the braid group in the standard framing
{
σ1, σ2,

σ−1
1 , σ−1

2

}
, we can compute the distribution uσ

n(
) for a random process on
{
σ̄1, σ̄2, σ̄

−1
1 , σ̄−1

2

}
.

Modifying slightly the derivation carried out above, one obtains that the corresponding process
φi is such that p(φi = h/6) = p(φi = −h/6) = 1/2. This yields

uσ
n (
) = 1

hσσ

√
2πn

exp

(
− (
/h)2

2nσ 2
σ

)
(33)

with σ 2
σ = 1

36 .
This result seems to be important in the context of lattice random walks in a transversal

magnetic field [25] which has relations with the Harper–Hofstadter problem (see [26] for a
review) in hyperbolic geometry. Note that 
/h ∝ A counts the algebraic area A enclosed by
the random path on the graph of the group PSL(2, Z). It is interesting to compare the result
(33) to the exact solution of the area problem in the continuous case, derived in [27]. The
probability distribution in this case reads

pt(A) ∝ exp(−A2/2t)

cosh2(πA/t)
(34)

where A is the dimensionless hyperbolic area and t is the time. For long trajectories (t � 1),
one can check that the Gaussian behaviour (33) is recovered. For short trajectories (t � 1)

one recovers the flat space limit, unreachable in our model because the length scale is fixed by
the curvature. This asymptotic agreement between the continuous and discrete models is an
important fact, though intuitively expectable.

The decomposition introduced above allows us to compute the return probability, i.e. the
probability p(wn = Id ) = pr(n) of obtaining a ‘trivial’ braid after n random elementary
moves. Using (24) the condition wn = Id is equivalent to the conditions

LPSL(2,Z)(π(wn)) = 0 and f (n) = 0.

Denote

p{LPSL(2,Z)(π(wn)) = 0} = pπ
r (n)

and

p{f (n) = 0 knowing that LPSL(2,Z)(π(wn)) = 0} = pc
r (n).

The probabilities pπ
r (n) and pc

r (n) obey the following relation:

pr(n) = pπ
r (n)pc

r (n) (35)

where pπ
r (n) is computed in appendix A and pc

r (n) can be re-expressed in the following way:

pc
r (n) = huσ

n (0). (36)

Collecting (35)–(36) we arrive at the final expression for pr(n):

pr(n) = C

σσ

√
2π

λn

n2
(37)

where λ = 2
√

2+1
4 and C = 9 + 4

√
2

7π
(these constants are computed in appendix A).
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3.2.3. Numerical results. So far there is no constructive algorithm to find the reduced form
of words of B3 for generators σi . The existence of an algorithm depends crucially on the set
of generators we choose. Indeed, it is shown in [28] that computing the length in terms of
generators σi of a braid in Bn is an NP-complete problem. Let us mention however that braid
groups are ‘biautomatic’ (see [29]) which basically means that there exists a set of generators
for which the reduced words are exactly known. This allows in particular to solve the word
enumeration problem and to implement methods which can compare two different braids in a
polynomial time (see [30]). In our case of the simplest nontrivial group B3 we tried a random
reduction procedure, but it converges only in exponential time. Since our analytical results
are obtained in the regime (n � 1), the numerical simulations give no additional information.

4. Diffusion on hyperbolic lattices: traces and Lyapunov exponents

We consider the representation of dimension 2 of the groups introduced above, and investigate
their action on the hyperbolic Poincaré plane H = {z, Im z > 0}. Namely, we consider the
following fractional-linear transforms:(

a b

c d

)
: z → az + b

cz + d
. (38)

We recall that PSL(2, R) is the group of orientation preserving isometries of H. The groups
PSL(2, Z), PSL(2, Z)u,Hq, Fn admit representations as subgroups of PSL(2, R) and their
Cayley graphs (considered in the previous section) are now viewed as isometric lattices
embedded into H. Now one can investigate their metric properties using the natural hyperbolic
(geodesic) distance in H. We define the lattices under consideration in the same way as we
have defined the Cayley graphs:

• We construct the set of all possible orbits of a given root point (we choose the point
i = (0, 1) for convenience) under the action of the group.

• We denote by δ(wn) the hyperbolic distance δ(i, wn(i)) between i and wn(i).
• We call ‘lattices’ (keeping in mind that the precise definition of a lattice, not necessary

here, is a discrete subgroup with cofinite volume) the Cayley graphs of the groups involved
here because of two important features:

– they are discrete subgroups of PSL(2, R), the group of motion of the hyperbolic
2-space. Hyperbolic distance is a pair–point invariant, that is δ(i, w(i)) =
δ(γ i,wγ (i)), which justifies the term isometric;

– they have the property of so-called lattice groups: they have no points of accumulation
(for the topology of H).

Let us add that the above description is based on the well-known results on Fuchsian
group theory (another designation of discrete subgroups of PSL(2, R), see [11, 31]). The
properties of a Fuchsian group G depend strongly on the fundamental domain of G, which is
a minimal set of points generating H under the action of G. We recall that the fundamental
domain of the Hecke group is the circular triangle with angles

{
0, π

q
, π

q

}
(see figure 5 for H3).

It can be shown that the fundamental domain of Fn is a zero-angled n-gon. Our
contribution to this subject concerns the construction of the fundamental domain of the
deformed group PSL(2, Z)u (figure 6).

This construction is based on the general method exposed in [11]. The outline is as
follows. We first find the fixed point i/u of Su, and x0 = 1/(1 − u2) of Tu. We then draw
the only geodesic through i/u which intersects its images by Tu and T −1

u with angle π/3.
Circles of centre x0 passing these intersections complete the construction. Let us note that
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Figure 5. Fundamental domain of PSL(2, Z).
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Figure 6. Fundamental domain of PSL(2, Z)u, for u = 1.2.

the topology of the Cayley graph obtained in this way does not depend on u. Recall that only
commutation relations, independent of u, set the topological structure of the Cayley graph.
Only the metric properties are affected by u. In particular, the area of the fundamental domain
is finite only for u = 1. The group is then said to be of type I in the classification of Fuchsian
groups. For u �= 1 it is of type II. It means that the corresponding monodromy problems are
deeply different (see [32]). Solving the monodromy problem is an important issue since it
allows us to get the conformal transform that maps the fundamental domain onto H. To our
knowledge the problem is solved only for u = 1. We have therefore to content ourselves
with an existence theorem in the general case. The existence of such a transform allows us to
define a map fu from the fundamental domain of PSL(2, Z)u to the fundamental domain of
PSL(2, Z). The action of PSL(2, Z)u on H is in this sense conjugate to the action of PSL(2, Z):

∀ωu ∈ PSL(2, Z)u ωu(z) = f −1
u ◦ ωu=1 ◦ fu(z). (39)

The dependence on the parameter u is clearly expressed in this way.

4.1. Analytic results

Let us return to the definition of the model and recall that the groups under consideration act
in the hyperbolic Poincaré upper half-plane H = {z ∈ C, Im(z) > 0} by fractional–linear
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transforms4. The matrix representation of the generators (denoted by hi, 1 � i � ng) of the
different groups has been given in section 2.

Choosing the point (x0, y0) = (0, i) as the tree root, see figure 5, we associate any vertex
on the lattice with an element wn = ∏n

k=1 hαk
where 1 � αk � ng and wn is parametrized by

its complex coordinates zn = wn(i) in the hyperbolic plane.
Strictly speakingH should be identified with SL(2, R)/SO(2); we here identify an element

with its class of equivalence of SO(2). The following identity holds (see [11, 33]):

2 cosh(δ(wn)) = Tr
(
wnw

†
n

)
(40)

where the dagger denotes transposition.
We are interested in the distribution function Pn(δ), and therefore have to look for

the distribution of traces of matrices wn. The method described hereafter involves mainly
the results of [34]. The outline of our approach is as follows. We study the behaviour of the
random matrix wn, generated by a Markov chain (which must fulfil ergodicity properties, see
[35]) defined as follows:

wn+1 = wnhαn+1 (αn+1 = i, 1 � i � ng) with probability
1

ng

. (41)

We use the standard methods of random matrices and consider the entries of the 2 × 2
matrix wn as a 4-vector Vn. A given transformation wn+1 = wnhα now reads

Vn+1 =
(

h†
α 0

0 h†
α

)
Vn. (42)

This block-diagonal form allows us to study one of the two 2-vectors composing Vn, say vn.
Parametrizing vn = (�n cos θn, �n sin θn) and using the relation δ(wn) ≡ δn � 2 ln �n valid
for n � 1, one gets a recursion relation vn+1 = h†

αvn in terms of hyperbolic distance δn:

δn+1 = δn + ln pα(cos θ) (43)

where pα is a second-order polynomial depending on the specific form of transition matrices
hα. While for the angles one gets straightforwardly

cot θn+1 = hα(cot θn). (44)

The action of hα is fractional–linear.
One now has to study the invariant measure µ(θ), giving the asymptotic probability of

having θn = θ . Introducing x = cot θ , we are led to study the action of the group restricted
on the real line parametrized by x. The statistical properties of µ have been discussed by
Gutzwiller and Mandelbrot [36] in the case of the free group �. An alternative, put forward
in [34], is to define µ(x) as the limit of the following recursion relation:

µ(n+1)(x) = 1

ng

ng∑
α=1

µ(n)(hα(x))

∣∣∣∣dhα(x)

dx

∣∣∣∣ . (45)

The convergence µ(n)(x) → µ(x) for n → ∞ depends on the properties of the functional
transform (45). One should first mention that according to Furstenberg theory [37], this
convergence to the invariant distribution µ(x) holds in the weak sense. Our point here is to
give a numerically accessible definition of µ(x),which requires the convergence in distribution.
It has been successfully checked numerically by comparing to the direct sampling of different
orbits that this limit exists independently of initial conditions. Despite the absence of a
4 It is convenient first to define the representation in the Poincaré upper half-plane and then use the conformal
transform to the unit disc.
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rigorous proof, we claim that µ is defined with no ambiguity by (45). This enables us to
compute the desired distribution Pn(δ). The crucial point required for the convergence of
µ(n) to the invariant distribution, is the existence of ergodic properties of θn. It means that
for n � 1, the distribution of θn is given by µ(θ), independently of n and initial conditions
(see [35] for precise definitions). We introduce the generating function for (43); due to the
Markovian structure of (43), we can perform the averaging:

〈eikδn+1 〉 = 〈eikδn 〉〈[pα(cos θ)]ik〉. (46)

Thus we obtain

〈eikδn〉 =
[

1

ng

ng∑
α=1

∫ π/2

−π/2
dθ µ(θ)[pα(cos θ)]ik

]n

. (47)

This form suggests that for n large, Pn(δ) satisfies a central limit theorem. Indeed such a
theorem exists (see [38, 39]) for Markovian multiplicative processes (and in particular for
random matrices, see [40]) provided that the phase space is ergodic. We are then led to
compute only the first two moments (the first one being the Lyapunov exponent), which
gives us

γ1 = lim
n→∞

〈δ〉
n

= 1

ng

ng∑
α=1

∫ π/2

−π/2
dθ µ(θ) ln pα(cos θ) (48)

and

γ2 = 1

ng

ng∑
α=1

∫ π/2

−π/2
dθ µ(θ) ln2 pα(cos θ). (49)

Hence we get for the dispersion:

σ 2 = lim
n→∞

〈(δ − 〈δ〉)2〉
n

= γ2 − γ 2
1 . (50)

4.2. Numerical results

We present in this section the numerical and semi-analytical results for the invariant measure
µ and the Lyapunov exponent γ1. Our main goal is to compare the approach developed here
with the results following from the study of random walks on graphs (see section 3).

Let us call the backbone subgroup B(G) of the group G the subgroup of G whose Cayley
graph is the backbone of the graph of G. It seems to be more instructive to rely on this purely
geometrical characterization of B and to avoid a formal definition. Let us stress that B(G) is
a free subgroup of G. One has for example B(Fn) = Fn. Consider now the representation of
Fq by q idempotent generators g1, . . . , gq with the following homomorphism �:

� :

{
Fq −→ Hq

gi −→ b−i
q a2b

i
q .

(51)

Due to the injectivity of � , the following decomposition holds:

Hq =
q⋃

i=1

bi
q�(Fq) (52)

with

bi
q�(Fq)

⋂
bj

q�(Fq) = ∅ for i �= j (53)
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Table 1. The drift in a hyperbolic metric and in a metric of words.

Backbone subgroup, rγ s
1 /γ d

1 rγ s
1 /γ d

1 l ≡ 〈LG〉/n (n � 1) :
Group Generators scale factor r numerical semi-analytical graph approach

F3 h1, h2, h3 F3, 1 0.3334 0.332 1/3

F4 h1, h2, h
−1
1 , h−1

2 F4, 1 0.501 0.503 1/2

H3 a2, b3, b
−1
3 F3, 2 0.1334 0.132 2/15 = 0.133 . . .

PSL(2, Z) σ̄1, σ̄2, σ̄
−1
1 , σ̄−1

2 F3, 1 0.2501 0.248 1/4

which means that the Cayley graph of Hq is the disjoint union of q trees Tq . Thus we set
B(Hq) = Fq .

The scale factor r is the ‘average’ irreducible length of the generators of B(G) viewed as
elements of G. In other words,

LG(w) ∼ rLB(G)(w) (54)

for w ∈ B(G) with LG(w) � 1. We have studied two different Markovian processes in the
space H where the group G is isometrically embedded:

• simple random walks, characterized by the Lyapunov exponent γ s
1 ;

• directed random walks (that are walks excluding two consecutive opposite steps) on the
backbone subgroup B(G), characterized by the Lyapunov exponent γ d

1 .

By construction � = γ d
1

/
r is the average hyperbolic length of an elementary step on G.

We conjecture that γ s
1

/
� ≡ rγ s

1

/
γ d

1 gives the number of steps to the origin (normalized by n)
on the graph G, i.e. the drift l:

l = r
γ s

1

γ d
1

. (55)

Let us point out that this result links together two definitions of the ‘drifts’ for random
walks on the groups G: the drift l = limn→∞ 〈LG(w)〉

n
is defined on the graph in the metric of

words while γ s
1 and γ d

1 are defined in terms of hyperbolic distances for an isometric embedding
of G into H (the scale factor r depends only on the set of generators under consideration and
is metric independent). Thus we claim

〈LG(w)〉 = r
〈ln Tr(ww†)〉

γ d
1

(56)

where a word w is identified with its matrix representation. We believe that equation (56) is
of great importance, since it relates the properties of a group defined only through symbolic
commutation relations to the geometrical properties of a given representation.

The stochastic average 〈· · ·〉 in (56) is necessary, to wash out purely geometrical effects
such as multifractality investigated in [34]. (It corresponds to fluctuations of the hyperbolic
distance for words of the same length on the backbone graph.) One has to stress that (56)
holds due to a ‘global’ angular symmetry (see [41] for a precise definition of this symmetry
for graphs) of both models; only the ‘radial’ part of the processes is considered, whereas
the angular dependence is averaged. This has been checked numerically in the continuous
case: generators have to be properly normalized, such that each elementary step should have
the same hyperbolic length, ensuring angular symmetry, else the invariant measure µ fails to
converge.

All results are summarized in table 1. The semi-analytical computations are based on
numerical evaluation of γ1 in (48).
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5. Discussion and perspectives

We have presented at length in this work different aspects of random walks on a family of
hyperbolic-like groups. The main attention has been paid to the computations of the drift and
the return probability of Markov processes on the corresponding groups. Let us summarize
the results obtained in the paper.

5.1. The drift and related problems

On the one hand, we studied the Cayley graphs of these groups, and briefly exposed the
general methods of computing the transition probabilities for Markovian processes on these
graphs. In particular we explicitly calculate the drift in different cases. As an application, we
studied Markovian processes on the braid group B3, and explicitly showed that the drift lB3

for a symmetric random walk on this group tends at n → ∞ to the drift of a process on the
group PSL(2, Z), which is found to be 1

4 . It means that a typical random braid of string length
n can be realized on average by n

4 elementary moves. In particular this result shows that the
random vortex lines (represented by random braids) are highly entangled. The ‘complexity’
η of the entangled state can be characterized by the drift lB3 and hence η ∼ n

4 . This property
has purely non-Abelian nature. Namely, when distinguishing the topological states of braided
lines just counting the corresponding winding numbers between the strings, we arrive at the
conclusion that the average braid complexity behaves as η ∼ √

n which is an incorrect result.
On the other hand, we took advantage of the fact that the groups Hq and PSL(2, Z) are

subgroups of PSL(2, R) and therefore act naturally in the hyperbolic plane H. The Cayley
graphs of these groups are then isometrically embedded in H. Instead of the usual length
in the metric of word, we could, thanks to this representation, use the metric structure of H
and study the hyperbolic length of random elements of the group. This problem leads to the
study of products of random matrices. The method described in [34] allows us to compute the
probability distribution of the hyperbolic length and the corresponding Lyapunov exponents.

These two approaches are shown to be related by an equation (56). This result is a
strong motivation for investigating further the geometric properties of hyperbolic groups in
connection with other topological invariants. As an example we briefly mention the Alexander
polynomials of knots.

The Alexander polynomial ∇K(t) of a link K represented by a closed braid wn = ∏n
j=1 σrj

of length n is defined as follows:

(1 + t + t2)∇K(t) = det


 n∏

j=1

σ̂rj
− Î


 = det


 n∏

j=1

σ̂rj


 + 1 − Tr


 n∏

j=1

σ̂rj


 (57)

where j runs ‘along the braid’, i.e. labels the number of used generators, the subscript
rj ∈ {−2,−1, 1, 2} marks the set of braid generators (letters), with the prescription σ̂−1

i = σ̂−i

and Î defines the 2 × 2 identity matrix. For long words (n � 1), the following asymptotic
expression holds:

Tr(wn) ∼ (
Tr
(
wnw

†
n

))1/2 ∼ eδ(wn)/2. (58)

One then has, with the parameter u = √−t (recall that σ̂i depends on u):

(1 − u2 + u4)∇K(u) = u2p(wn) − up(wn) eδ(wn)/2 + 1 (59)

with p(wn) = #(+) − #(−). In this regime the polynomial is therefore expressed only in
terms of p(wn) and δ(wn). The quantity p(wn) is a ‘poor’ invariant, in the sense that it takes
the same value for a large number of links. In other words p(wn) is just the length of the
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element wn projected onto Z. Indeed there exists an obvious group homomorphism π1 from
B3 to Z defined by π1

(
σ±1

i

) = ±1. All non-Abelian properties are lost by this invariant.
The geometric invariant δ(wn), described above, is much stronger. As we have shown, this
invariant is related directly to the word length in the group PSL(2, Z), which preserves the
noncommutative structure of B3 (recall that the random word length in B3 has the same
asymptotics as the word length in PSL(2, Z)). The information is nevertheless not redundant,
because there is no nontrivial homomorphism from PSL(2, Z) to Z (there is no finite order
element in Z). In particular, under the condition δ(wn) = 0 (Z-walks), p is an exact invariant
having the sense of a winding number.

The form (59) seems in particular convenient for the possible problems of statistics of
Alexander polynomials, since we know the statistics of both p and d. In particular, for a simple
random walk, the typical Alexander polynomial for a long braid could be defined as ∇̄n(u):

(1 − u2 + u4)∇̄n(u) = 1 − enγ1(u)/2 (60)

where γ1(u) is the Lyapunov exponent of the random product of generators σ̂i .

5.2. The return probability

The graph approach and the introduction of ‘magnetic walks’ enabled us also to compute
explicitly the return probability on B3, i.e. the probability pr(n) of getting a trivial (completely
reducible) braid from a random word of string length n. The result pr(n) ∝ λn/n2, where
λ = 2

√
2+1
4 < 1 (see equation (37)) reflects again the non-Abelian nature of the problem under

consideration: the return probability in the commutative space has no exponential dependence
on n.

Special attention should be paid to the difference in the return probability on the group
PSL(2, Z) and on the braid group B3 (which is the central extension of PSL(2, Z)). The
factorization of the random walk on the group B3 into two parts: the diffusion along
the graph PSL(2, Z) and along the centre lead, to the fact that pre-exponential asymptotics
of the corresponding return probabilities are different: pr(n) ∝ λn/n2 for B3 versus
pr(n) ∝ λn/n3/2 for PSL(2, Z).
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Appendix A. Drift on PSL (2, Z)

The aim of this appendix is to compute the drift of a random walk on PSL(2, Z) in terms of
generators σ̄i . We keep the notation of section 3 and proceed in the same way, noting that
the process under consideration is no longer a simple random walk, but is described by the
transitions shown in figure 3. A direct counting gives the following master equation for k � 2:


P̄

i

3(k, n + 1) = 1
4

(
P̄

i

3(k + 1, n) + 2P̄
i

3(k − 1, n) + P̄
o

3(k − 1, n)
)

P̄
o

3(k, n + 1) = 1
4

(
P̄

o

3(k + 1, n) + P̄
i

3(k + 1, n) + 2P̄
o

3(k − 1, n)
) (A1)

with initial conditions of the form{
P̄

i

3(k, 0) = αδk,0

P̄
o

3(k, 0) = (1 − α)δk,0.
(A2)
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One then straightforwardly obtains the following algebraic linear system:


Qi(x, s)
(

1 − s

4
(e−ix + 2 eix)

)
− s

4
eixQo(x, s) = α

− s

4
e−ixQi(x, s) +

(
1 − s

4
(e−ix + 2 eix)

)
Qo(x, s) = 1 − α

(A3)

determining Qi,o(x, s):

Qi,o(x, s) = ai,o
α (x) + bi,o

α (x)s

p(x, s)
. (A4)

We omit the details irrelevant to the purpose of this appendix. We denote as s±(x) the
roots of p(x, s). They obey the equations


s+ = 2 − ix + O(x2)

s− = 1 − ix

4
+ O(x2)

(A5)

and one finally gets

〈k〉3

n
= 1

4
. (A6)

One now has to make sure that for any word wn of n letters in the alphabet σ̄i the following
relation holds:

k(wn) = L(wn) + O(1). (A7)

Even if figure 3 makes this statement clear, a more rigorous proof is as follows. Consider a
given word w, with k(w) = k0. Then the following decomposition holds:

w = b
ε0
3

(
k0∏

i=1

a2b
εi

3

)
a

εf

2 (A8)

with ε0 ∈ {0, 1, 2}, εi ∈ {1, 2}, εf ∈ {0, 1}. To prove (A7) we use the relation

L

(
k0∏

i=1

a2b
εi

3

)
= k0 (A9)

and one finally has

lim
n→∞

L(wn)

n
= 1

4
. (A10)

Let us mention that a more direct derivation of this result can be brought in if one considers the
PSL(2, Z) generators. The structure of the Cayley graph of PSL(2, Z) depends on the basis
and in the framing S, T , T −1 it has the form of the so-called hyperbolic honeycomb lattice
(see figure 7).

We denote by Pn(µ) the probability of the fact that the randomly generated n-letter
word w{σ̃1,σ̃2} with the uniform distribution ν = 1

4 over the generators
{
σ̃1, σ̃2, σ̃

−1
1 , σ̃−1

2

}
can be contracted to the minimal irreducible word of length µ in terms of generators{
σ̃1, σ̃2, σ̃

−1
1 , σ̃−1

2

}
. The point is that µ coincides with the distance on the backbone graph of

PSL(2, Z).
In other words, the function Pn(µ) defines the probability of finding the random walk at

a distance µ along the backbone graph from the origin after n steps. We distinguish ‘left’ and
‘right’ cells (with respect to the initial ‘root’ plaquette), labelled correspondingly by α = 1, 2.
In figure 7, the value of α is shown by the number in the centre of each honeycomb plaquette.
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Figure 7. The honeycomb lattice.

Table 2. The elementary moves on the honeycomb graph.

α = 1 α = 2

σ̃1 = T µ → µ + 1 σ̃1 = T µ → µ − 1
σ̃2 = T −1ST −1 µ → µ σ̃2 = T −1ST −1 µ → µ + 1

σ̃−1
1 = T −1 µ → µ − 1 σ̃−1

1 = T −1 µ → µ + 1

σ̃−1
2 = T S−1T µ → µ + 1 σ̃−1

2 = T S−1T µ → µ

Suppose the walker stays in some vertex α of the cell located at a distance µ > 1 from the
origin along the graph backbone. The change in µ after changing one arbitrary step from the
set
{
σ̃1, σ̃2, σ̃

−1
1 , σ̃−1

2

}
is summarized in table 2.

It is clear that for any value of α two steps increase the length of the backbone, µ, one
step decreases it and one step leaves µ without changes5 (see table 2).

Let us introduce the effective probabilities: p1—to jump to some specific cell among three
neighbouring ones of the graph and p2—to stay in the given cell. Because of the symmetry
of the graph, the conservation law has to be written as 3p1 + p2 = 1. By definition we have:

p1
def= ν = 1

4 . Thus we can write the following set of recursion relations for the integral
probability Pn(µ,N):

Pn+1(µ) = 1
4Pn(µ + 1) + 1

4Pn(µ) + 1
2Pn(µ − 1) (A11)

5 In fact, each cell has two output vertices labelled by indices ‘11’ and ‘12’ for ‘left’ cells and ‘21’ and ‘22’ for the
‘right’, but as one can check straightforwardly it is not necessary to discriminate between them.
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ρ1

ρ2 ρ2

ρ3 ρ3

ρ4

root

Figure 8. Different types of vertices and their corresponding weights (here q = 6). ρi gives the
asymptotic (k, n → ∞) probability of being at a vertex of type i.

with the following boundary conditions:

Pn+1(0) = 1
2 (Pn(0) + Pn(1)). (A12)

This is a standard problem whose solution is known, and the condition L(wn) = 0 is in
particular equivalent to µ = 0, therefore the probability of obtaining a trivial word after n
random steps (denoted pπ

r (n)) is given by

pπ
r (n) = Pn(0) = C

λn

n3/2
(A13)

with

C = 9 + 4
√

2

7π
and λ = 2

√
2 + 1

4
.

Appendix B. General formalism for random walks on Hq

Let us generalize the computations of section 3 to the case of Hq . One can write

P̄ q(k, n) =
[ q

2 ]+1∑
i=1

P̄
i

q (k, n) (B1)

and define the constants ρi, 1 � i �
[

q

2

]
+ 1 (assuming the existence of the corresponding

limits):

ρi = lim
k→∞

(
lim

n→∞
P̄

i

q(k, n)

P̄ q(k, n)

)
(B2)

which satisfy the normalization condition

[ q

2 ]+1∑
i=1

ρi = 1. (B3)

The sum (B1) runs over
[

q

2

]
+1 non-equivalent vertices (the graph is locally Z2 symmetric,

see figure 8) of the elementary q-gon of the graph. Proceeding in the standard way, we define
the transform

Qi
q(x, s) = T

[
P̄

i

q

]
(B4)
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and derive the master equation, whose solution can be expressed in the following form:

P̄
i

q = T −1


 nq∑

j=1

αj

(
M−1

q

)ji
(x, s, �ρ)


 (B5)

where the αj parametrize the initial conditions

[ q

2 ]+1∑
i=1

Qi
qM

ij
q (x, s, �ρ) = αj (B6)

and

Mq(x, s, �ρ) =




−1 s
3 (1 + eix) s

3 eix · · · · · · s
3 eix

s
3

(
2 + ρ2

1−ρ1
e−ix

) −1 s
3 0 · · · 0

s
3

ρ3

1−ρ1
e−ix s

3 −1 s
3

. . .
...

s
3

ρ4

1−ρ1
e−ix 0

. . .
. . .

. . . 0
...

...
. . . s

3 −1 s
3

s
3

ρn

1−ρ1
e−ix 0 · · · 0 s

3 −1 + s
3




. (B7)

For n, k � 1 one obtains, using the same method as for q = 3

P̄
i

q(k, n) = ρ̄i (�ρ)δ(k − l̄q (�ρ)n) (B8)

where

l̄q (�ρ) = lim
n→∞

〈k〉q
n

= i
ds

q
−

dx
(B9)

and s
q
− is the root of the polynomial det(Mq(x, s, �ρ)) closest to zero.

To make the system of equations (B5)–(B7) self-consistent we must set

ρi = ρ̄i (�ρ) (B10)

which closes a system of equations determining ρi . Finally, one can write the limiting drift in
the following form:

lq = lim
n→∞

〈d〉q
n

= l̄q (�ρ)

(
1 +

∑nq

i=2(i − 1)ρi

1 − ρ1

)
. (B11)

One can check that this formalism gives for q = 3 the same results as has been derived in
section 3.
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